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Abstract
Recently, there has been considerable interest in noise radar over a wide spectrum of
applications, such as through wall surveillance, detection, tracking, Doppler estim-
ation, polarimetry, interferometry, ground-penetrating or subsurface profiling, syn-
thetic aperture radar (SAR) imaging, inverse synthetic aperture radar (ISAR) ima-
ging, foliage penetration imaging, etc. One of the major advantages of the noise radar
is its inherent immunity from jamming, detection, and external interference. In this
report, the basic theory of noise radar design is treated. The theory supports the
use of noise waveforms for radar detection and imaging in such applications as covert
military surveillance and reconnaissance. It is shown that by using wide-band noise
waveforms, one can achieve high resolution and reduced ambiguities in range and
Doppler estimations. Two coherent processing receivers, namely, the correlation re-
ceiver and the double spectral processing receiver of noise radar returns are described
and their range estimation is presented. Mutual interference and low probability of
interception (LPI) capabilities of noise radar are also evaluated. The simulation res-
ults show the usefulness of the noise radar technology to improve on conventional
radars.

Résumé
Récemment, le radar à bruit a suscité un intérêt considérable aux fins d’un large
éventail d’applications, p. ex. surveillance à travers les murs, poursuite, estimation
Doppler, polarimétrie, interférométrie, sondage du sol ou profilage de la sous-surface,
détection, imagerie SAR (radar à synthèse d’ouverture) et ISAR (radar à synthèse
d’ouverture inverse ) et imagerie par pénétration du feuillage. Un de ses grands avan-
tages est son immunité au brouillage intentionnel, à la détection et au brouillage
externe. Le présent rapport aborde les principes de base du radar à bruit, qui sou-
tiennent l’utilisation de formes d’onde de bruit pour la détection et l’imagerie radar
dans des applications telles que la surveillance et la reconnaissance militaires secrètes.
Nous montrons que l’utilisation de formes d’onde à large bande permet une haute ré-
solution et la réduction des ambiguïtés de mesure de distance et d’estimation Doppler.
Deux récepteurs de traitement cohérent, soit le récepteur de corrélation et le récep-
teur de traitement DSP (traitement spectral double) des échos radar sont décrits
et une estimation de leur portée est présentée. Les capacités LPI (faible probabilité
d’interception) et de brouillage réciproque du radar à bruit sont également évaluées.
Les résultats des simulations montrent l’utilité du radar à bruit, qui améliore les
capacités des radars classiques.
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Executive summary

Noise Radar Technology Basics
T. Thayaparan, C. Wernik; DRDC Ottawa TM 2006-266; Defence R&D Canada –
Ottawa; December 2006.

Target detection, identification, imaging and tracking are all essential operations
in military radar applications. They must be carried out in a variety of difficult
conditions and environments that may include high target density, dense clutter and
jamming. This report proposes the use of noise radar systems for successful execution
of the above operations in such environments.

Noise radar is a form of random signal radar whose transmitting signal is a microwave
noise source or is modulated by a lower frequency white noise source in contrast to the
conventional pulse, CW (continuous wave), FM (frequency modulated), or FM/CW
radars. Because of the truly random transmitting signal, noise radars have many ad-
vantages compared with conventional radars, including unambiguous measurement
of range and Doppler estimations, high immunity to noise, very low probability of
intercept (LPI), high electro-magnetic compatibility, good electronic counter coun-
termeasure (ECCM) capability, good counter electronic support measure (CESM)
capability, and ideal ’thumbtack’ ambiguity function. Thus, as soon as the concept of
noise radar appeared, many people paid close attention and many studies emerged.
The earliest research work related to noise radar occurred about 45 years ago, but
since techniques of that time were immature, noise radar development proceeded
slowly. Part of the reason was due to the limited availability of suitable electronic
components. Now, along with progress of digital signal processing algorithms, signal
processing hardware, solid state microwave components and high-speed VLSI (very
large scale integration), the realization of noise radar was relatively easy. On the
other hand, owing to the electronic jamming in modern war, much more attention is
paid to noise radar because of its good ECCM and CESM properties.

This report evaluates the noise radar basics. We describe two signal processing tech-
niques of noise radar returns. One of them uses the correlation processing of the
radar returns, while the second one exploits their, so-called, double spectral pro-
cessing. Both methods combine the transmitted and received noise waveforms in
such a way that the range to the target can be determined. Simulation results show
that both methods unambiguously determine the range of the target. We evaluate
the mutual interference effects on noise radars and linear frequency modulated (LFM)
waveform radars caused by other radars when determining the range and velocity of
a moving target. The results show that noise radars, because of the random nature of
the waveforms, are very good at suppressing very high level interference from other
radars compared to LFM radars. An evaluation of the probability that the noise
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radar’s noise waveform would be detected is also studied. It is shown that in a vari-
ety of noisy environments, the noise radar always has a much lower LPI than the
conventional LFM radar. The noise radar’s exceptional performance in the above
evaluations makes it a suitable radar system for a variety of military applications.

It is recommended that the exploitation of noise radar, as a highly advanced military
surveillance and reconnaissance radar system, be undertaken to improve battlefield
operations. We identify specific cases that are common in today’s Canadian Forces’
deployment areas where noise radar would be crucial in addressing hostile threats,
specially in the area of through wall surveillance, ground-penetrating or subsurface
probing applications, and foliage penetration (FOPEN) applications.
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Sommaire

Noise Radar Technology Basics
T. Thayaparan, C. Wernik; DRDC Ottawa TM 2006-266; R & D pour la défense
Canada – Ottawa; décembre 2006.

La détection, l’identification, l’imagerie et la poursuite de cibles sont des opérations
essentielles des applications radar militaires. Elles doivent être menées dans diverses
conditions et environnements difficiles, p. ex. haute densité de cibles, clutter dense et
brouillage intentionnel. Le présent rapport propose l’utilisation de systèmes radar à
bruit pour l’exécution efficace de ces opérations dans de tels environnements.

Le radar à bruit est un radar à signal aléatoire qui émet un bruit hyperfréquence ou
un signal modulé par une source de bruit blanc de fréquence plus basse, contraire-
ment aux radars classiques à impulsions, à onde entretenue (CM), à modulation de
fréquence (FM) ou FM/CW. Étant donné son signal véritablement aléatoire, le ra-
dars à bruit offre bien des avantages par rapport aux radars classiques, p. ex. mesure
non ambiguë de la distance et de l’estimation Doppler, grande immunité au bruit,
très faible probabilité d’interception (LPI), grande compatibilité électromagnétique,
bonne capacité de contre contre mesures électroniques (CCME) et de contre-mesures
de soutien électronique (CESM) et fonction d’ambiguïté en pointe idéale. Ainsi, dès
que le concept de radar à bruit est apparu, de nombreuses personnes s’y sont inté-
ressées de près et un grand nombre d’études ont été réalisées. Les premiers travaux
remontent à près de 45 ans, mais comme les techniques étaient alors peu développées,
l’évolution a été lente, en partie à cause de la rareté des composants électroniques
nécessaires. Avec l’évolution des algorithmes de traitement numérique des signaux,
du matériel de traitement des signaux, des composants hyperfréquences à semicon-
ducteurs et de la technologie VLSI (intégration à très grande échelle) haute vitesse, la
réalisation du radar à bruit est aujourd’hui relativement aisée. D’autre part, compte
tenu de l’utilisation du brouillage électronique intentionnel dans la guerre moderne,
le radar à bruit suscite un intérêt encore plus grand étant donné ses bonnes propriétés
CCME et CESM.

Le présent rapport évalue les principes de base du radar à bruit. Il décrit deux tech-
niques de traitement des échos de ce radar. L’une utilise le traitement par corrélation
des échos des radars, et l’autre la technique DSP (traitement spectral double). Les
deux méthodes combinent les formes d’onde de bruit émises et reçues afin de déter-
miner la distance de la cible. Les résultats des simulations montrent que les deux
méthodes déterminent sans ambiguïté la distance de la cible. Nous évaluons les effets
de brouillage réciproque sur les radars à bruit et les radars à forme d’onde LFM (mo-
dulation linéaire de la fréquence), causés par d’autres radars, lors de la détermination
de la distance et de la vitesse d’une cible mobile. Les résultats montrent qu’en raison
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de la nature aléatoire des formes d’onde, les radars à bruit sont très efficaces pour
supprimer le brouillage de très haut niveau provenant d’autres radars, par rapport
aux radars LFM. Une évaluation de la probabilité de détection de leur forme d’onde
est également étudiée. Le rapport montre que dans divers milieux bruyants, le radar
à bruit a toujours une LPI très inférieure à celle d’un radar LFM classique. Ses per-
formances exceptionnelles lors des évaluations en font un système radar bien adapté
à diverses applications militaires.

L’exploitation du radar à bruit, comme système radar militaire de surveillance et de
reconnaissance hautement perfectionné, est recommandée afin d’améliorer les opé-
rations tactiques. Nous identifions certains cas aujourd’hui communs dans les zones
de déploiement des Forces canadiennes où le radar à bruit serait d’une importance
cruciale face à des menaces ennemies, en particulier pour la surveillance à travers les
murs, le sondage du sol ou de la sous-surface et la pénétration du feuillage (FOPEN).
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1 Introduction
Noise radar is a form of random signal radar that employs a noise waveform as the
transmitted signal and uses coherent processing of radar returns in contrast to the
conventional pulse, CW (continuous wave), FM (frequency modulated), or FM/CW
radars. Because of the truly random transmitting signal, noise radars have many
advantages compared with conventional radars, including unambiguous measurement
of range and Doppler estimations, high immunity to noise, low probability of intercept
(LPI), high electro-magnetic compatibility, good electronic counter countermeasure
(ECCM) capability, good counter electronic support measure (CESM) capability, very
low probability of intercept (LPI), and ideal ’thumbtack’ ambiguity function [1]-[25].
Noise radar systems have not yet reached sufficient maturity for military use. The
objective of this report is to make clear the advantageous properties of noise radar in
current and for future military applications.

The research on noise radar or random signal radar started during the 1960s [5].
At that time, theoretical analysis was made and some prototypes were constructed.
However, due to the limited availability of suitable electronic components, the re-
search on noise radar dropped quickly, for the following reasons: 1) while generation
of pseudorandom signal has been well developed, generation of pure random signal
was much more difficult; 2) for noise radar, modulation of a transmitting signal is
random. So the correlation processing is necessary instead of the common pulse com-
pressor. Therefore, microwave variable delay-line is a key component in the receiver
of noise radar. However, the manufacturing of microwave variable delay-line was also
very difficult to do in the past. Since the 1990s, with the development of solid-state
microwave components and high-speed VLSI (very large scale integration), enabling
the generation of a microwave random signal and manufacture of microwave variable
delay-line. This technical progress most likely ensures the implementation of noise
radar soon. Thus, the research on noise radar has become more and more required.
An all-around review of noise radar or random signal radar in the past thirty years
are given in [11]-[12].

Over the past few years, the research has been devoted to the development and
implementation of random noise radar by various research groups [8], [4], [13]-[17].
Recent research has investigated the potential use of noise radar for ultrawideband
SAR/ISAR imaging, Doppler and polarimetric measurements, collision warning, de-
tection of buried objects, and targets obscured by foliage [2], [6], [15]-[25]. Wide
bandwidth gives high range resolution, and the extended pulse length improves the
transmitted average power. The non-periodic waveform suppresses the range ambigu-
ity while reducing the probability of intercept and interference. The implementations
of varying complexity of noise radar were analyzed and discussed in [1]-[25].

In this report, we describe two methods for coherent processing of noise radar returns.
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In both cases, a part of the transmitted signal is used as a reference. When a radar
return is received, it is down converted to the IF-band coherently using the reference
signal. How those signals are used next depends on the method used. The first is
correlation reception. This method makes use of a digital delay line to delay the
reference signal before multiplying it by the IF radar return. The resulting product
is passed through a low pass filter to produce a correlation function of the product.
The range of a target is estimated as the time delay given by the position of the
correlation function’s maximum [1]-[2], [4], [6]. We derive correlation functions for
such a receiver based on a variety of transmitted signals and present results from
simulations of specific radar systems. The second method for coherent processing
of noise radar returns is double spectral processing reception [10]. Also known as
the spectral interferometry method, the double spectral processing is another way of
estimating a target’s range. The simplest implementation of such a receiver adds the
reference and radar return before converting them down to the IF-band. The sum is
then fitted into a spectrum analyzer and the time delay is determined via the Fourier
transform of the resulting power spectrum [2]. We will derive the power spectrum of
the sum of arbitrary signals via its autocorrelation function. We also show how to
extract the time delay based on the position of the maxima in the Fourier transform.
A simulation of a noise radar system consisting of a double spectral processing receiver
is presented.

An important operational consideration of all radar systems is mutual interference.
We examine the case when multiple noise radars are operating simultaneously in
order to provide results concerning mutual interference operation. These results are
compared to those obtained by conventional radars employing a linear frequency mod-
ulated (LFM) waveform. Also, more specific to the application of covert surveillance,
is the low probability of interception performance of radar systems. In this report, we
compare noise radars with conventional LFM radars in terms of the ability to detect
either one in various noisy environments.

This report is focused on presenting basic principles of noise radar technology. Sig-
nificant improvements in military systems may be realized in radio frequency ap-
plication areas by taking advantage of emergent noise radar technology for advanced
radar design. This technology can lead to sophisticated surveillance and reconnais-
sance techniques through the ability to overcome hostile CESMs and other threats.
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2 Noise Radar Basics
2.1 Correlation Receiver
The correlation uses the principle that when the delayed reference signal is correlated
with the actual target echo, the peak value of the correlation process can indicate
the distance to the target (the amount of time delay of the reference signal is also
a measure of distance to the target), while outputs of Doppler filters following the
correlator give target velocity [8]. Figure 1 shows the main elements of random noise
radar. A noise signal is transmitted, and a delayed signal is received from a point
target. A replica of the transmitted noise, delayed by T0, is correlated with the
received signal. When Tr is varied a strong correlation peak is obtained for Tr = T0,
which gives an estimate of the target range r0 = cT0/2.

Let us consider a radar emitting a time limited signal x(t). Denote the received signal
by y(t). Furthermore, we assume that a single point scatterer is located at the range
r0 along the radar line-of-sight (LOS). According to this assumption, the received
signal can be written as:

y(t) = Aσx(t− T0) + ε(t) (1)

where T0 = 2r0/c is the round-trip delay caused by the finite speed of the electro-
magnetic waves, ε(t) is an undesired part of the received signal (noise caused by
the reflection from other objects along the LOS) and Aσ denotes target reflectivity.
Without loss of generality we will assume that Aσ = 1. The correlation of the emitted
and received signals can be written as:

R(τ) =

Z Tint

0

y(t)x∗(t− τ)dt. (2)

where Tint is the integration time. In the noiseless case, the maximum value of |R(τ)|
is at the point τ = T0.

In the case of conventional radars, the signal x(t)can be expressed as:

x(t) = A(t)ejϕ(t) (3)

where the amplitude A(t) and the instantaneous frequency ω(t) = ϕ0(t) are continu-
ous, slow-varying functions. The integrand in (2) is of the form:

y(t)x∗(t− τ) = A(t− T0)A
∗(t− τ)ejϕ(t−T0)−jϕ(t−τ)

≈ |A(t)|2ejω(t)(τ−T0) (4)

Furthermore if the radar emits a LFM signal with constant amplitude A(t) = A0,
ω(t) = ω0 + at we get:

y(t)x∗(t− τ) = |A0|2ejω0(τ−T0)ejat(τ−T0) (5)
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Figure 1: Main components of noise radar with external deley line.
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and

R(τ) = |A0|2ejω0(τ−T0)
Z Tint

0

ejat(τ−T0)dt

= |A0|2ejω0(τ−T0)
1

ja(τ − T0)
(ejaTint(τ−T0) − 1)

= |A0|2ejω0τ−jaTint(τ−T0)/2 · 2
sin(a(τ − T0)Tint/2)

a(τ − T0)
(6)

Once again, the maximal value of |R(τ)| is at τ = T0.

Let us now assume that x(t) is a white stationary Gaussian random process with
autocorrelation function Rxx(τ). The output of the correlation receiver given by (2)
is also a random process. Let us analyze the expected value of (2) as:

E[R(τ)] = E[

Z Tint

0

y(t)x∗(t− τ)dt]

=

Z Tint

0

E[y(t)x∗(t− τ)]dt

=

Z Tint

0

E[x(t− T0)x
∗(t− τ)] +E[ε(t)x∗(t− τ)]dt

=

Z Tint

0

Rxx(τ − T0)dt+

Z Tint

0

E[ε(t)x∗(t− τ)]dt (7)

If the emitted signal x(t) and the noise ε(t) are independent processes then the second
term in (7) is equal to zero and we get:

E[R(τ)] = TintRxx(τ − T0). (8)

Since the autocorrelation function’s maximum is at u = 0 (R(τ) ≤ R(0)), the delay
T0 can be estimated as the position of the maximum as:

T0 = max
τ
|E[R(τ)]| (9)

Special cases:

• Let x(t) be the white stationary Gaussian random process. The autocorrela-
tion function is Rxx(τ) = I0δ(t − τ). This is an ideal shape since E[R(τ)] =
TintI0δ(t − τ), and its maxima are ideally defined (only one point is different
from zero). Note that signals of this form are not bandlimited and they can not
be used in practical applications.

DRDC Ottawa TM 2006-266 5



• Let x(t) be the bandlimited white stationary Gaussian random process with
power spectral density (PSD) Sxx(f) = S0 for f0 − B/2 ≤ f < f0 + B/2 and
Sxx(f) = 0 otherwise. The autocorrelation function is of the form:

Rxx(τ) = S0e
j2πf0τ

sin(πBτ)

πτ
(10)

with well defined maxima at τ = 0, but also with side lobes. The first side lobe
is B π

2
times lower than the main maximum.

2.1.1 Correlation Receiver Simulation

Let us assume that the transmitted and received signals are demodulated to the
baseband −B/2 ≤ f < B/2. In this case, according to the sampling theorem, we
must have N = BTint samples within one pulse. x(n) denotes the samples of the
transmitted signal and y(n) denotes the samples of the received signal. Then we can
calculate the correlation in the discrete domain as:

R(k) =
N−1X
n=0

y(n)x∗(n− k) (11)

and the maximum of R(τ) is estimated with discretization step ∆τ = Tint
N
= 1

B
and

the range resolution will be ∆r = c
2B
, as in the case of conventional radars.

Note that the number of range cells, i.e. the range of the index k in (11) can be
less than N . Namely if we define the maximum target range rmax then we should
use k = 0, 1, ..., kmax, and kmax =

rmax
∆r

= N 2rmax
Tintc

can be significantly less than N .
In this way we can significantly reduce the computational burden associated with
the correlation receiver, which in turn can strengthen its usefulness in an operational
situation for short-range applications.

The fast Fourier transform (FFT ) can be used for the calculation (11)

R(k) = FFT−1[FFT [y(n)]FFT ∗[x(n)]] (12)

Note that in this case we obtain N samples of R(τ), so if kmax ¿ N we will have
many unnecessary calculations.

In this simulation we use the radar carrier frequency f0 = 10GHz, bandwidth B =
51.2 MHz, and pulse repetition frequency PRF = 1000 kHz. The number of samples
within the radar pulse isN = BTint = 512. The range resolution is∆r = c

2B
= 2.93m,

and the maximum range is rmax = N∆r = 1500m. There are three stationary targets
simulated along the LOS at r1 = 100m, r2 = 400m and r3 = 500m. The correlation
R(k) is calculated according to the equation (11) and the results are presented in
Figure 2. Figure 2 clearly shows that there are three strong correlation peaks located
at the expected ranges. Note that there are no sidelobes.
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Figure 2: Correlation receiver example (three targets located at r1 = 100m, r2 =
400m and r3 = 500m).
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2.2 Double Spectral Processing Receiver
The double spectral processing is another method of correlation measurements and
another way of estimating the target’s range [2]. In this case we first form the signal
s(t) as a sum of the received and transmitted signals

s(t) = x(t) + y(t) = x(t) +Aσx(t− T0) + ε(t). (13)

The autocorrelation function of such a signal is:

Rss(τ) = E[s(t)s∗(t− τ)]

= E[(x(t) +Aσx(t− T0) + ε(t)) · (x∗(t− τ) +A∗σx
∗(t− τ − T0) + ε∗(t− τ))]

= Rxx(τ) +A∗σRxx(τ + T0) +Rxε(τ) +

+AσRxx(τ − T0) + |Aσ|2Rxx(τ) +AσRxε(τ − T0) +

+Rεx(τ) +Rεx(τ + T0) +Rεε(τ) (14)

Under the assumption that the noise ε(t) is uncorrelated with the radar signal wave-
form x(t) we get:

Rss(τ) = (1 + |Aσ|2)Rxx(τ) +A∗σRxx(τ + T0) +AσRxx(τ − T0) +Rεε(τ) (15)

The PSD of the signal s(t) is of the form:

Sss(ω) = FTτ [Rss(τ)]

= Sxx(ω)(1 + |Aσ|2 +A∗σe
jωT0 +Aσe

−jωT0) + Sεε(ω)

= Sxx(ω)|Aσ| cos(ωT0 − θ) + Sxx(ω)(1 + |Aσ|2) + Sεε(ω) (16)

where θ is phase of Aσ. As we can see, the PSD of the analyzed signal can be divided
into three parts. The first part is the modulated PSD of the transmitted signal
while the second and third parts are the PSDs of the transmitted signal and noise,
respectively. Let us assume that Sxx(ω) ≈ const. and Sεε(ω) ≈ const. In this case,
the Fourier transform of the envelope of the PSD Sss(ω) can be approximated as:

FTω(|Sss(ω)|) ≈ C1δ(u− T0) + C1δ(u+ T0) + C0δ(u) (17)

where C1 and C0 are constants.

The delay T0 can be estimated as the position of the maxima in the Fourier transform
of the envelope of the signal’s PSD.

In practical cases we have only one realization of the random process s(t) and we
can roughly estimate the PSD of the signal as the squared magnitude of the signal’s
Fourier transform

Ŝss(ω) = |FTt[s(t)]|2 (18)
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Figure 3: Double spectral processing receiver example (single target at r0 = 100m)

and by spectral processing of the obtained PSD estimate we get

P (u) = |FTω[Ŝss(ω)]| (19)

The maximum value of P (u) for u > 0 is located at u = T0 and it can be used as an
estimator of the target range since r = 1

2
T0c.

2.2.1 Double Spectral Processing Receiver Simulation

In this simulation we use the radar carrier frequency f0 = 10GHz, bandwidth B =
51.2 MHz, and pulse repetition frequency PRF = 1000 kHz. The number of samples
within the radar pulse isN = BTint = 512. The range resolution is∆r = c

2B
= 2.93m.

The target reflectivity is set to Aσ = 1. One target is simulated along the LOS at
r1 = 100m. The double spectral processing is calculated according to the equation
(19) and the results are presented in Figure 3. As expected, the sharp peak is found
at r = 100m. Note that the u axis is appropriately scaled to represent the real range
coordinate.

DRDC Ottawa TM 2006-266 9



2.3 Mutual Interference
When two or more radar systems operate in proximity at the same frequency band,
they could produce a scenario where mutual interference (MI) is experienced.

In the presented model, we assume that there are NR continuous radars with random
waveforms operating simultaneously at the same frequency band. We will consider
the simplest scenario of a single-point target. Each radar transmits a signal xi(t)
where i = 1, 2, . . . NR. At the receiver of the k-th radar, the received signal is of the
form:

yk(t) = K1,kx1(t− td,1,k) +K2,kx2(t− td,2,k) + . . .

+Kk,kxk(t− td,k,k) + · · ·+KNR,kxNR
(t− td,NR,k) + ε(t) (20)

Time delays td,i,k are proportional to the total distance ri,k, i.e. from i-th radar to
target and then from target to k-th radar. Amplitude coefficientsKi,k are proportional
to the target reflectivity and to r−2i,k . ε(t) is noise at the receiver side. It is obvious
that components likeKk,kxk(t−td,k,k) of the received signal yk(t) are of interest where
all other components represent interference.

Since all radars use a noise waveform, we can calculate the equivalent noise at the
receiver and model the received signal as:

yk(t) = Kk,kxk(t− td,k,k) + εeq(t) (21)

where the power of the equivalent noise εeq(t) is equal to the sum of the powers of
each interference return and the power of noise ε(t). The returned signal is processed
by the correlation receiver as described in Section 2.1.

2.3.1 Mutual Interference Simulation

In this simulation three noise radars are considered. The target and radar positions
are shown in Figure 4. The first and second radars are located at the same position,
while the third radar is shifted. All three radars operate at the same frequency of
10GHz with a 25MHz bandwidth. The PRF for the first and third radars is 97.7 kHz
and the PRF for the second radar is 116 kHz. Note that the first and third radars have
the same parameters whereas the second radar differs slightly. The radar parameters
are given in Table 1. It is assumed that the target moves with constant velocity 200
m/s along the first and second radars’ LOS. Equations (21) and (11) are used to
perform the calculations in this simulation.

Five cases with respect to the three radars’ output powers are considered:

1. The three radars operate with the same power. Range Doppler profiles are
shown in Figure 5. The upper row shows the radar returns of the first , second

10 DRDC Ottawa TM 2006-266
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V=200m/s

Figure 4: Location of three radars

and third radars without MI (only one radar is active) while the lower row
shows the radar returns of the first, second and third radars with MI (all three
radars are active). In this scenario, the influence of one radar on the others is
negligible.

2. The first radar’s power is 20 dB higher than the third radar’s power, while the
second radar’s power is 3 dB higher than the third one. Results are shown in
Figure 6. The upper row shows the radar returns of the first, second and third
radars without MI (only one radar is active) while the lower row shows the
radar returns of the first, second and third radars with MI (all three radars are
active).

3. The first radar’s power is 30 dB higher than the third radar’s power, while the
second radar’s power is 3 dB higher than the third one. Results are shown in
Figure 7. The upper row shows the radar returns of the first, second and third
radars without MI (only one radar is active) while the lower row shows the
radar returns of the first, second and third radars with MI (all three radars are
active).

4. The first radar’s power is 35 dB higher than the third radar’s power, while the
second radar’s power is 3 dB higher than the third one. Results are shown in
Figure 8. The upper row shows the radar returns of the first, second and third
radars without MI (only one radar is active) while the lower row shows the
radar returns of the first, second and third radars with MI (all three radars are
active). Note that the third radar is not able to detect the target.

5. The first radar’s power is 40 dB higher than the third radar’s power, while the

DRDC Ottawa TM 2006-266 11



Table 1: Radar parameters

Radar Number 1 2 3
Operating frequency 10 GHz 10 GHz 10 GHz
Bandwidth 25 MHz 25 MHz 25 MHz
Pulse repetition frequency 97.7 kHz 119 kHz 97.7 kHz
Coherent integration time 2.62 ms 2.56 ms 2.62 ms

second radar’s power is 3 dB higher than the third one. Results are presented
in Figure 9. The upper row shows the radar returns of the first, second and
third radars without MI (only one radar is active) while the lower row shows
the radar returns of the first, second and third radars with MI (all three radars
are active). The third radar is not able to detect the target.

Figures 5-9 show that in all cases, the first and second radars successfully detect
the target’s range and velocity. In cases 4 and 5, the third radar is not able
to detect either of the target’s parameters because of the influence from radar
1 and radar 2 on radar 3. Another observation is that there is no significant
influence from radar 2 and radar 3 on radar 1 since radar 1 has the highest
transmit power. Radar 1 introduces noise in the range-Doppler profiles of the
radar 2 and radar 3. These results suggest that the noise radar can operate
with low SNR (up to -30 dB). However when the interference signal is 40 dB
or above, the radar is not able to detect target. The interference does not
introduce “ghost targets”. This study indicates that for noise radars the signal
transmitted from one radar is treated as noise for other radars, which suggests
that more than one radar can share the same bandwidth. They will effectively
raise the overall noise floor though.

2.3.2 Comparison Between noise radar and Conventional LFM
Radar

In this section we evaluate the mutual interference effects on noise radars and linear
frequency modulated (LFM) waveform radars from other such radars when determin-
ing the range and velocity of the moving target. Let us consider three X-band radars,
each operating at a center frequency of 10GHz with 150MHz bandwidth. Assume
a single-point target located at (0m, 0m, 100m) with velocity Vtg = 100 m

s
. Radar

locations are (3010m, 0m, 0m) for the first radar, (3080m, 0m, 0m) for the second
radar, and (2000m,−2300m, 0m) for the third radar. The first and third radars have
the same transmit power while the transmit power of the second radar is 16 times
(12 dB) higher. The target to radar distance is 3011.7m for the first radar, 3081.6m
for the second radar and 3049.6m for the third radar. The projection of the target’s
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Figure 5: Range-Doppler profiles. Radars operate with the same transmit power.
Upper row: radar returns of the first, second and third radars without MI. Lower
row: radar returns of the first, second and third radars with MI.
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Figure 6: Range-Doppler profiles. Radars operate with the following relative transmit
powers: +20 dB, +3 dB and 0 dB. Upper row: radar returns of the first, second and
third radars without MI. Lower row: radar returns of the first, second and third
radars with MI.
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Figure 7: Range-Doppler profiles. Radars operate with the following relative transmit
powers: +30 dB, +3 dB and 0 dB. Upper row: radar returns of the first, second and
third radars without MI. Lower row: radar returns of the first, second and third
radars with MI.
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Figure 8: Range-Doppler profiles. Radars operate with the following relative transmit
powers: +35 dB, +3 dB and 0 dB. Upper row: radar returns of the first, second and
third radars without MI. Lower row: radar returns of the first, second and third
radars with MI.
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Figure 9: Range-Doppler profiles. Radars operate with the following relative transmit
powers: +40 dB, +3 dB and 0 dB. Upper row: radar returns of the first, second and
third radars without MI. Lower row: radar returns of the first, second and third
radars with MI.
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velocity onto the radar LOS is 99.94 m
s
for the first radar, 99.95 m

s
for the second radar

and −65.58 m
s
for the third radar. The radars transmit a series of 128 pulses and the

total integration time is 3.5ms. The number of samples within one pulse is 4096.
Equations (21) and (11) are used to perform the calculations in this simulation.

Two cases are considered:

1. The radars’ waveforms are LFM signals.

2. The radars use a random noise waveform.

The results are presented in Figure 10 for the first case and Figure 11 for the second
case. The figures consist of 6 subplots where each row corresponds to one radar. The
left column plots present range-Doppler profiles for the case when only one radar is
operating, while the right column plots present range-Doppler profiles for the case
when all three radars are operating simultaneously. The simulation model assumes
that the radars operate coherently.

In the conventional LFM case, only the second radar (highest power) gives a satis-
factory range-Doppler profile when all radars are operating simultaneously. The first
and third radar profiles result in targets with the wrong range and velocity (ghost
targets).

In the noise waveform case, each radar detects true target parameters in solo and
simultaneous operation modes. The influence of the second radar on the remaining
two is expressed through a higher noise level at the receiver (first and third row, right
subplots in Fig.11).

Figures 12 and 13 present the same setup with equal radar transmit powers. Ghost
targets in the case of LFM radars have become points with equal (very close) mag-
nitude, while interference in the case of noise radars is lower than in the previous
case. In all cases, the true target position in the range-Doppler domain is marked
with a red circle.

This study suggests that noise radars can operate in the same frequency band. The
mutual interference involves at higher level of noise only, and can decrease the max-
imum detection range of the target. On the other hand, LFM radars can produce
“ghost’ targets when more than one radar operate in same frequency band. The res-
ults show that noise radars are unlikely to interfere with other noise radar systems
or other radar systems in the same band.
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Figure 10: Conventional LFM radars. Three radars are considered. Subplots on the
left side present range-Doppler profiles when the radars operate without interference.
Subplots on the right side show interference effects when the radars operate simultan-
eously. The second radar’s transmit power is 12 dB higher than the transmit powers
of the first and third radars.
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Figure 11: Random waveform radars. Three radars are considered. Subplots on the
left side present range-Doppler profiles when the radars operate without interference.
Subplots on the right side show interference effects when the radars operate simultan-
eously. The second radar’s transmit power is 12 dB higher than the transmit power
of the first and third radars.
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Figure 12: Conventional LFM radars. Three radars are considered. Subplots on
the left side present range-Doppler profiles when the radars operate without interfer-
ence. Subplots on the right side show interference effects when the radars operate
simultaneously. All radars operate with same transmit power.
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Figure 13: Random waveform radars. Three radars are considered. Subplots on
the left side present range-Doppler profiles when the radars operate without interfer-
ence. Subplots on the right side show interference effects when the radars operate
simultaneously. All three radars operate with the same transmit power.

22 DRDC Ottawa TM 2006-266



2.4 Probability of Interception
Radars with conventional LFM waveforms transmit a series of identical pulses, so the
easiest way to detect these radar signals is through observation over a long period
of time and then examination of the Fourier spectrum of the observed signal. The
decision as to whether the radar signal is present in the noise or not can be derived
by comparison of the maximum value in the Fourier spectrum with some threshold
level, where the threshold level should be dependent on noise. With increasing ob-
servation time, the maximum value of the Fourier spectrum can be increased within
the considered frequency range significantly.

On the other hand, noise radars use stochastic waveforms and they are not periodic.
The observed signal does not exploit periodicity for long observation times and the
Fourier spectrum is equally distributed over the whole frequency band. That implies
low probability of interception. This heuristic analysis is presented in Figure 14 for
10 dB SNR, Figure 15 for 0 dB SNR and Figure 16 for -6 dB SNR. In this simulation,
the Fourier spectrum of the observed signal in the case of a conventional LFM radar
and a noise radar for various observation times are studied; Np=2,4,8,16, and 32
radar pulses are used. There are 64 samples in each pulse. Figures 14-16 suggest that
the conventional radar exhibits better detection compared with the noise radar in
the same noisy environment. The obvious reason is that the deterministic waveform
such as LFM involves periodicity. The periodic pulses can be detected by Fourier
transform (spectrum analyzer). However stochastic waveforms are not periodic and
therefore are not easy to detect by spectral analysis. The probability of interception
increases rapidly when observation time increases in case of conventional LFM radar.
However the probability of interception does not depend significantly on observation
time in the case of random waveform radar.
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Figure 14: Fourier spectrum of the observed signal in the case of a conventional LFM
radar (left) and a NR (right) for various observation times. Np is the number of radar
pulses within the observation time. The signal to noise ratio is 10 dB.
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Figure 15: Fourier spectrum of the observed signal in the case of a conventional LFM
radar (left) and a NR (right) for various observation times. Np is the number of radar
pulses within the observation time. The signal to noise ratio is 0 dB.
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Figure 16: Fourier spectrum of the observed signal in the case of a conventional LFM
radar (left) and a NR (right) for various observation times. Np is the number of radar
pulses within the observation time. The signal to noise ratio is -6 dB.
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3 Discussion and Conclusion
This report presents an overview of the basic principles of noise radar technology
(NRT). NRT is not currently in wide use. Only recently have achievements necessary
to NRT’s implementation have become available. The rapid advancement of digital
signal processing algorithms, signal processing hardware, new methods for generation
of noise waveforms, solid state microwave techniques, and integrated circuit electron-
ics, the realization of noise radar is relatively easy.

This report provides theoretical evaluations and simulation evaluations of NRT that
support its use in current and future applications. We evaluated two methods of
coherent processing of noise waveform returns, the correlation and double spectral
processing receivers. Both methods combine the transmitted and received noise wave-
forms in such a way that the range of the target can be determined. Simulation results
show that both methods determine the unambiguous range of the target. We evalu-
ated the mutual interference effects on noise radars and linear frequency modulated
(LFM) waveform radars from other radars when determining the range and velocity
of the moving target. The results show that noise radars are unlikely to interfere with
other noise radar systems or other radar systems in the same band. An evaluation
of the probability that the noise radar’s noise waveform is intercepted is also stud-
ied. It is shown that in a variety of noisy environments, the noise radar always has
a much lower LPI than the conventional LFM radar. The noise radar’s exceptional
performance in the above evaluations indicates that it a suitable radar system for a
variety of applications. The following three potential applications are identified for
the future research at DRDC. It should be noted that the through-wall sensing is an
ongoing research at the DRDC.

3.1 Through wall surveillance
Recent terrorist activities and law-enforcement situations involving hostage situations
underscore the need for effective through-wall detection. Through wall imaging tech-
nology has been developed for many years. However, there are still many improve-
ments that can be implemented in next generation radar systems, especially with
regard to covertness of the transmit signal and immunity from interference and jam-
ming. Current building interior imaging systems are based on short-pulse waveforms,
which require specially designed antennas to subdue unwanted ringing. In addition,
periodically transmitted pulses of energy are easily recognizable by the intelligent
adversary who may employ appropriate countermeasures to confound detection. A
polarimetric UWB noise has a great promise in its ability to covertly detect obscured
targets [25]. The main advantages of the random noise radar lie in two aspects: first,
random noise waveform has an ideal “thumbtack’ ambiguity function, i.e., its down
range and cross range resolution can be separately controlled, thus providing unam-
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biguous high resolution imaging at any distance; second, random noise waveform is
inherently low probability of intercept (LPI) and low probability of detection (LPD),
i.e., it is immune from detection, jamming, and interference. Thus, it is an ideal
candidate sensor for covert imaging of obscured regions in hostile environments.

3.2 Random noise polarimetry for high-resolution
subsurface probing applications

One of the potential applications is a random noise polarimetry for high-resolution
subsurface probing applications [15], which can deliver to the war-fighter super-
ior knowledge of the battle-space in difficult environments (intentional and non-
intentional environments) such as in Afghanistan and Iraq. Ground-penetrating or
subsurface radar systems are increasingly being used for a variety of military applica-
tions and operations in Afghanistan and Iraq. Although such systems are essentially
similar to other free-space radar systems, they present certain unique problems that
demand specialized system design and signal processing capabilities. Some of the
primary issues that need special attention are efficient coupling of the electromagnetic
energy into the ground, elimination of the large reflection from the air-to-ground in-
terface, achieving adequate penetration into sometimes lossy media, and achieving ad-
equate signal bandwidth consistent with desired depth resolution. From a phenomen-
ological point of view, factors such as propagation loss, clutter characteristics, and
target characteristics are quite different from free-space systems. Ground-penetrating
radar systems operate over a wide range of probing depths, from close-range high-
range applications such as locating buried mines and hidden voids in pavements at
depth of up to 50 cm, to long-range low-resolution applications such as probing geo-
logic strata at depths of over 100 m. Most of the ground-penetrating radars use
either linear frequency modulation (LFM) or step-frequency waveforms. However the
random noise polarimetry has its unique merits. This unique concept synergistically
combines the advantages of a random noise ultra-wideband waveform with the power
of coherent processing to provide a powerful technique for obtaining high-resolution
images.

3.3 Random noise polarimetry for high-resolution
foliage penetration applications

Among other SAR/ISAR applications, one of the potential applications is a foliage
penetration (FOPEN) polarimetric SAR imaging using random noise waveforms [21],
which can deliver to the war-fighter superior knowledge under difficult conditions
and environments that may include high target density, low-observable manoeuvring
threats, heavy clutter and jamming such as in Afghanistan and Iraq. As is known,
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when using a SAR to image targets under dense foliage, the foliage obscures the tar-
get images in three major ways. 1) The foliage attenuates the energy both incident
to and scattered from the target, resulting in a lower signal-to-noise ratio. 2) The
foliage forms strong backscatter clutter, reducing the target-to-background contrast
in the image. 3) The amplitude and phase fluctuation of the foliage distorts the
SAR images of the target. The first and second issues relate to the mean attenu-
ation and the backscatter, respectively, while the third relates to the amplitude and
phase fluctuations of the foliage. The detection and identification of targets obscured
by foliage have been topics of great current interest for the military. Several SAR
experiments have demonstrated promising images of terrain and man-made objects
obscured by dense foliage, by either using linear frequency modulation (LFM) or
step-frequency waveforms. The random noise waveform has its special merits. Be-
cause of the randomness and wide bandwidth of the transmit waveform, such a radar
has the potential for covert detection and identification, and is relatively immune
from hostile detection and jamming while preserving very high resolution. In addi-
tion NRT provides excellent potential capabilities for unambiguous and simultaneous
range and Doppler measurements with high resolution and accuracy as a result of
the non-periodic waveform. Furthermore, there is no theoretical limitation in the
unambiguous working range of NRT.
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